Nanotecnología: herramienta inteligente para la conservación del patrimonio arquitectónico y urbano

  • Luis Fernando Molina-Prieto Fundación Universidad de América
Palabras clave: patrimonio cultural, mantenimiento, conservación

Resumen

El artículo estudia las metodologías Inteligentes y no invasivas que la nanotecnología viene desarrollando para el mantenimiento, la conservación y la restauración de las construcciones patrimoniales. Se incluyen: una síntesis del origen y la evolución de la nanotecnología; los avances más relevantes en cuanto al mantenimiento inteligente del patrimonio arquitectónico y urbano; y los resultados obtenidos al aplicar la nueva generación de compuestos nanoestructurados sobre los materiales de construcción más comunes en las obras patrimoniales. Se concluye que el tratamiento de los edificios patrimoniales con nanocompuestos permite un mantenimiento más eficiente de los mismos, contribuye a su conservación, y está generando novedosos y muy eficaces procesos para la restauración del patrimonio cultural material de la humanidad.

Biografía del autor/a

Luis Fernando Molina-Prieto, Fundación Universidad de América

Arquitecto, docente investigador.

Referencias bibliográficas

Afrouzi, Y. M.; Marzbanl, P. & Omidvar, A. (2015). The effect of moisture content on the retention and distribution of nano-titanium dioxide in the wood. Maderas. Ciencia y Tecnología, vol. 17, N° 2: 385-390.

Arizzi, A.; Gomez-Villalba, L. S.; Lopez-Arce, G.; Cultrone, G. & Fort, R. (2015). Lime mortar consolidation with nanostructured calcium hydroxide dispersions: the efficacy of different consolidating products for heritage conservation. European Journal of Mineralogy, vol. 2015, N° 3: 311-324.

Bagnall, G. (2015). Performance and performativity at heritage sites. Museum and society, vol. 1, Issue 2: 87-103.

Benedix, R.; Dehn, F.; Quaas, J. & Orgass, M. (2000). Application of Titanium Dioxide Photocatalysis to Create Self-Cleaning Building Materials. Leipzig Annual Civil Engineering Report, N° 5: 157-168.

Bernat, M.; Janowskl, A.; Rzepa, S.; Sobleraj, A. & Szulwic, J. (2014). Studies on the use of terrestrial laser scanning in the maintenance of buildings belonging to the cultural heritage. 14th Geoconference on Informatics, Geoinformatics and Remote Sensing, SGEM. ORG, Albena, Bulgaria, 3: 307-318.

Bertolini, C.; Invernizzl, S.; Marzl, T. & Tulllani, J.M. (2013). The reinforcement of ancient timber- joints with carbon nano-composites. Meccanica, vol. 48, N° 4: 1925-1935.

Bertolini, C.; Crivellaro, A.; Marciniak, M.; Marzi, T. & Socha, M. (2010). Nanostructured materials for durability and restoration of wooden surfaces in architecture and civil engineering. World Conference on Timber Engineering-WCTE, 31 Aug. 2010.

Borsoi, G.; Lubelli, B.; van Hees, R.; Veira, R. & Santos Silva, A. (2015). Understanding the transport of nanolime consolidants within Maastricht limestone. Journal of Cultural Heritage, artículo en Prensa.

Cárdenes, V.; Mateos, F. J. & Femández-Lorenzo, S. (2013). Analysis of the correlations between free- ze-thaw and salt crystallization tests. Environmental Earth Sciences, Vol 71, N° 3: 1123-1134.

Cultrone, G.; Russo L. G.; Calabrò C.; Urosevic M. & Pezzino A. (2008). Influence of pore system characteristics on limestone vulnerability: a laboratory study. Environmental Geology, Vol. 54, N° 6: 1271-1281.

Chehreh, F. & Mastarl Farahanl, M. (2015). Surface droplet contact angle and colour characteristics of Eastern Cottonwood treated with nano-copper oxide and exposed to natural weathering. International Wood Products Journal, Vol. 6, N° 2: 69-71.

Cutler, N. & Viles, H. (2010). Eukaryotic Microorganisms and Stone Blodeterloration. Geomicrobiology Journal, N° 27: 630-646.

Dei, L. & Salvadori, B. (2006). Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. Journal of Cultural Heritage, vol. 7, N° 2:110-115.

Drexler, K. E. (1996). Engines of Creation: The Coming Era of Nanotechnology. London: Fourth Estate.

Drexler, K. E. (1992). Nanosystems: Molecular Machinery, Manufacturing, and Computation-. New York: Wiley & Sons.

Fouad, F. F. (2012). NanoArchitecture and Sustainability. Thesis of Master of Science In Architecture. University of Alexandria.

Gebessler, A. & Eberl, W. (1980). Conservation and maintenance of historic buildings in the German Federal Republic. A handbook. Berlin: Gebessler & Eberl.

Giorgi, R.; Baglioni, M.; Berti, D. & Baglioni, P. (2010). New Methodologies for the Conservation of Cultural Heritage: Micellar Solutions, Microemulsions, and Hydroxide Nanoparticles. Accounts of Chemical Research, vol. 43, N° 6: 695-704.

Giorgi, R.; Ambrosi, M.; Toccafondi, N. & Baglioni, P. (2010). Nanoparticles for Cultural Heritage Conservation: Calcium and Barium Hydroxide Nanoparticles for Wall Painting Consolidation. Chemistry-A European Journal, N° 16: 9374-9382.

Gholamiyan, H.; Tarmian, A.; Hosseini, K. &Azadfallah. M. (2012). The potential use of organosilane water soluble nanomaterlals as water vapor diffusion retarders for wood. Maderas. Ciencia y Tecnología, vol. 14, N° 1: 43-52.

Goffredo, G.; Quagllarinl, E.; Bondloll, F. & Mufano, P. (2014). TIO2 nanocoatings for architectural heritage: Self-cleaning treatments on historical stone surfaces. Journal of Nanoengineering and Nanosystems, vol. 228, N° 1: 2-10.

Goy, R. H. (1973). The International protection of the cultural and natural heritage. Netherlands Yearbook of International Law, vol. 4: 117-141.

Graziani, L. & & D'Orazlo, M. (2015). Blofoullng Prevention of Ancient Brick Surfaces by TIO2-Based Nano-Coatings. Coatings, N° 5: 357-365.

Graziani, L.; Quagllarlni, E.; Bondlonl, F. & D'Orazlo, M. (2014). Durability of self-cleaning TIO2 coatings on fired clay brick façades: Effects of UV exposure and wet & dry cycles. Building and Environment, N° 71:193-203.

Graziani, L.; Quagliarlnl, E.; Oslmanl, A.; Aqullantl, L.; Clementi, F.; Yéprémlan, C.; Lariccia, V.; Amoroso, S. & D'Orazio, M. (2013). Evaluation of Inhibitory effect of TIO2 nanocoatings against mlcroalgal growth on clay brick façades under weak UV exposure conditions. Building and Environment, N° 64: 38-45.

Guiffrida, A. & Clllberto, E. (2013). Syracuse Limestone: From the Past a Prospect for Contemporary Buildings. Geosciences, 2013, 3:159-175.

Hamed, S. A. M. (2013). Possibilities application of nanoscience and nanotechnology In conservation of archaeological wood: A review. Jokull Journal, vol. 63: 9-19.

Ibala, I.; El Ladkl, D.; Ezzeldeen, O.; Saeed, S. & Saoud, K. (2014). “Microwave Assisted Preparation of Calcium Hydroxide and Barium Hydroxide Nanoparticles and Their Application for Conservation of Cultural Heritage”. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection (pp. 342-352). Switzerland: Springer International Publishing.

Karaca, F. (2013). Mapping the corrosion Impact of air pollution on the historical peninsula of Istanbul. Journal of Cultural Heritage, vol. 14, N° 2: 129-137.

Karaulova, M.; Shackleton, O.; Gõk, A. Kotsemlr, M. & Shapira, P. (2014). Nanotechnology Research and Innovation in Russia: A Bibliometric Analysis. Manchester: Manchester Institute of Innovation Research / University of Manchester.

Kramar, S.; Mlladenovlc, A.; Prlstacz, H. & Mlrtlc, B. (2011). Deterioration of the black drenov grlc limestone on historical monuments (Ljubljana, Slovenia). Acta Carsologica, vol. 40, N° 3: 483-495.

Kroftová, K.; Cejka, T. & Zigler, R (2013). Restoration, stabilization and strengthening of heritage buildings with nano-fibre and high-strength fibre base materials. 1st Annual International Conference on Architecture and Civil Engineering, ACE 2013, pp. 392-398.

La Russa, M.F.; Rovella, N.; Alvarez, M.; Belfiore, C.; Pezzino, A.; Crlsl, G & Ruffolo, S. (2016). Nano-TiO2 coatings for cultural heritage protection: The role of the binder on hydrophobic and self-cleaning efficacy. Progress in Organic Coatings, N° 91: 1-8.

Lichelli, M.; Malagodl, M.; Weththlmunl, M. & Zanchi, C. (2014). Nanoparticles for conservation of blo-calcarenlte Stone. Applied Physics A, vol. 114, Issue 3: 673-683.

López-Arce, P.; Zomoza-lndart, A.; Gomez-Vlllalva, L. S. & Fort, R. (2013). Short- and Longer-Term Consolidation Effects of Portlandite (CaOH)2 Nanoparticles in Carbonate Stones. Journal of Materials in Civil Engineering, N° 25: 1655-1665.

Lubelli, B. & van Hees, R. P. J. (2011). Evaluation of the Effect of Nano-Coatings with Water Repellent Properties on the Absorption and Drying Behaviour of Brick. Hydrophobe VI. 6th International Conference on Water Repellent Treatment of Building Materials Aedlficatlo Publishers, 125 - 136.

Manlvasakan, P.; Rajendran, V.; Ranjan, P.; Sahu, B.; Panda, B.; Vallyaveettlll, S. & Jegadesan, S. (2010). Effect ofTIO2 Nanoparticles on Properties of Silica Refractory. Journal of the American Ceramic Society, Vol. 93, N° 8: 2236-2243.

Moradi, M. A. & Taher Tolou Del, M. S. (2013). Modern technology necessity in academic training to protect of Iran architectural heritage authenticity. International Journal of Architectural Engineering & Urban Planning, vol. 23, Nos. 1 - 2: 23-33.

Munaslnghe, H. (2005). The politics of the past: constructing a national identity through heritage conservation. International Journal of Heritage Studies, 11(3), 251-260.

Nanomatch (2015). Nanomatch. Newsletter 2015. Unión Europea: Nanomatch.

Omar Hemelda, F. A. (2010). Green Nanoarchitecture. Thesis of Master of Science In Architecture. University of Alexandria.

Pesce, G.L.; Morgan, D.; Odgers, D.; Henry, A.; Allen, M. & Ball, R. (2013). Consolidation of weathered limestone using nanolime. Construction Materials, vol. 166, Issue CM4:213-228.

Rodríguez-Navarro, C.; Suzuki, A. & Ruiz-Agudo, E. (2013). Alcohol Dispersions of Calcium Hydroxide Nanoparticles for Stone Conservation. Langmuir, N° 29: 11457-11470.

Ruffolo, S.; La Russa, M.; Rlcca, M.; Belfiore, C.; Macchla, A.; Comité, V. Pezzino, A. & Criscl, G. (2015). New insights on the consolidation of salt weathered limestone: the case study of Módica stone. Bulletin of Engineering Geology and the Environment, pp 1-13.

Ruffolo, S.; La Russa, M.; Aloise, P.; Belfiore, C.; Macchia, A.; Pezzino, A. & Crisci, G. (2014). Efficacy of nanolime in restoration procedures of salt weathered limestone rock. Applied Physics A, N° 114: 753-758.

Ruíz-Agudo, E.; Mees, F.; Jacobs, P. & Rodriguez-Navarro, C. (2007). The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environmental Geology, Vol. 52, N° 2: 269-281.

Saiz-Jimenez, C. (2004). Air Pollution and Cultural Heritage. London: Taylor and Francis.

Skoll, G. R. & Korstanje, M. (2014). Urban heritage, gentrification, and tourism in Riverwest and El Abasto. Journal of Heritage Tourism, 9 (4): 349-359.

Stefanidou, M.; Matziaris, K. & Karagiannis, G. (2013). Hydrophobization by means of nanotechnology on Greek sandstones used as building facades. Geosciences, N° 3: 30-45.

Tidblad, J.; Kucera, V.; Ferm, M.; Kreislova, K.; Brüggerhoff, S.; Doytchlnov, S. & Karmanova, N. (2012). Effects of air pollution on materials and cultural heritage: ICP materials celebrates 25 years of research. International Journal of Corrosion, vol. 2012:1-16.

Tourney, C. (2010). “Tracing and disputing the story of nanotechnology”. In: Hodge, G. A., Bowman, D. M., & Maynard, A. D. (Eds.). (2010). International handbook on regulating nanotechnologies. Cheltenham, UK: Edward Elgar, 46-59.

Tuduce, A. A.; Timar, M. C.; Campean, M.; Croitoru, C. & Sandu, I. (2012). Paraloid B72 Versus Pa- raloid B72 with Nano-ZnO Additive as Consolidants for Wooden Artefacts. Materiale Plastice, vol. 49, N° 4: 293-300.

Tuduce, A. A.; Anca, I. C.; Timar, M. C.; Domltrescu, G. L. & Sandu, I. (2013). SEM-EDX, Water Absorption, and Wetting Capability Studies on Evaluation of the Influence of Nano-Zinc Oxide as Additive to Paraloid B72 Solutions Used for Wooden Artifacts Consolidation. Microscopy Research and Technique, N° 76: 209-218.

Yin, S. (2015). The Efficacy of a Borate and Penetrating Oil Preservative Combination for the Conservation of Exterior Wood. (Master Thesis). University of Pennsylvania.

Zornoza-lndart, A. & López-Arce, P. (2015). Silica nanoparticles (SiO2): Influence of relative humidity in stone consolidation. Journal of Cultural Heritage, Article In Press.
Cómo citar
Molina-Prieto, L. F. (2016). Nanotecnología: herramienta inteligente para la conservación del patrimonio arquitectónico y urbano. Revista De Investigación, 9(1), 7–22. https://doi.org/10.29097/2011-639X.37

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2016-01-01
Sección
Artículos de Pregrado