Economía circular en la agricultura mediante la recuperación de fósforo

  • Angélica María Alzate Ibañez Fundación Universidad de América
  • A. C. Quiceno Universidad Católica de Colombia
  • L. D. Ángel Universidad Católica de Colombia
  • J. M. Redondo Universidad Católica de Colombia.
Palabras clave: ciclo del fósforo, recuperación del fósforo, reciclaje del fósforo, ciclo de vida, ecotecnologías

Resumen

El presente trabajo describe el estado conceptual y metodológico de la recuperación de fósforo desde la perspectiva de economía circular en la agricultura. A partir de la revisión de literatura en la Web of Science se construyó una red de citaciones —basada en la teoría de grafos— para el análisis de la información obtenida. Los hallazgos del estudio abordan los métodos de recuperación de fósforo y los resultados de la evaluación del desempeño de las diferentes tecnologías aplicadas. El documento establece el alto potencial al incluir fósforo en los procesos agrícolas, y el valor que genera en relación con la disminución de problemas ambientales, así como con la conservación de recursos.

Biografía del autor/a

A. C. Quiceno, Universidad Católica de Colombia

Especialista en evaluación integral de estudios de impacto ambiental. Ingeniera ambiental. Docente investigadora invitada.

L. D. Ángel, Universidad Católica de Colombia

Magíster en desarrollo sostenible y medioambiente. Ingeniera industrial.

J. M. Redondo, Universidad Católica de Colombia.

Doctor en ingeniería automática. Magíster en gestión y evaluación ambiental. Magister en docencia e investigación universitaria. Ingeniero ambiental. Profesor investigador.

Referencias

Akram, U., Quttineh, N. H., Wennergren, U., Tonderski, K., y Metson, G. S. (2019). Optimizing nutrient recycling from excreta in Sweden and Pakistan: Higher spatial resolution makes transportation more attractive. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00050

D’Amato, D., Droste, N., Allen, B., Kettunen, M., Lähtinen, K., Korhonen, J., Leskinen, P., Matthies, B. D., y Toppinen, A. (2017). Green, circular, bioeconomy: A comparative analysis of sustainability avenues. Journal of Cleaner Production, 168, 716-734. https://doi.org/10.1016/j.jclepro.2017.09.053

Barquet, K., Järnberg, L., Rosemarin, A., y Macura, B. (2020). Identifying barriers and opportunities for a circular phosphorus economy in the Baltic Sea region. Water Research, 171. https://doi.org/10.1016/j.watres.2019.115433

Boh, M. Y., y Clark, O. G. (2020). Nitrogen and phosphorus flows in Ontario’s food systems. Resources, Conservation and Recycling, 154, 104639. https://doi.org/10.1016/j.resconrec.2019.104639

Cieślik, B., y Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142, 1728-1740. https://doi.org/10.1016/j.jclepro.2016.11.116

Davis, S. C., Kauneckis, D., Kruse, N. A., Miller, K. E., Zimmer, M., y Dabelko, G. D. (2016). Closing the loop: Integrative systems management of waste in food, energy, and water systems. Journal of Environmental Studies and Sciences, 6(1), 11-24. https://doi.org/10.1007/s13412-016-0370-0

van Dijk, K. C., Lesschen, J. P., y Oenema, O. (2016). Phosphorus flows and balances of the European Union Member States. Science of the Total Environment, 542, 1078-1093. https://doi.org/10.1016/j.scitotenv.2015.08.048

Egle, L., Rechberger, H., Krampe, J., y Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment, 571, 522-542. https://doi.org/10.1016/j.scitotenv.2016.07.019

Ghisellini, P., Cialani, C., y Ulgiati, S. (2016). A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114, 11-32. https://doi.org/10.1016/j.jclepro.2015.09.007

Gontard, N., Sonesson, U., Birkved, M., Majone, M., Bolzonella, D., Celli, A., Angellier-Coussy, H., Jang, G. W., Verniquet, A., Broeze, J., Schaer, B., Batista, A. P., y Sebok, A. (2018). A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical Reviews in Environmental Science and Technology, 48(6), 614-654. https://doi.org/10.1080/10643389.2018.1471957

Haddaway, N. R., Piniewski, M., y Macura, B. (2019). What evidence exists relating to effectiveness of ecotechnologies in agriculture for the recovery and reuse of carbon and nutrients in the Baltic and boreo-temperate regions? A systematic map protocol. Environmental Evidence, 8(1), 1-7. https://doi.org/10.1186/s13750-019-0150-x

Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., y van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2), 138-147. https://doi.org/10.1007/s11367-016-1246-y

Huygens, D., y Saveyn, H. G. M. (2018). Agronomic efficiency of selected phosphorus fertilisers derived from secondary raw materials for European agriculture. A meta-analysis. Agronomy for Sustainable Development, 38. https://doi.org/10.1007/s13593-018-0527-1

Jurgilevich, A., Birge, T., Kentala-Lehtonen, J., Korhonen-Kurki, K., Pietikäinen, J., Saikku, L., y Schösler, H. (2016). Transition towards circular economy in the food system. Sustainability, 8(1), 1-14. https://doi.org/10.3390/su8010069

Kataki, S., West, H., Clarke, M., y Baruah, D. C. (2016). Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resources, Conservation and Recycling, 107, 142-156. https://doi.org/10.1016/j.resconrec.2015.12.009

van der Kooij, S., van Vliet, B. J. M., Stomph, T. J., Sutton, N. B., Anten, N. P. R., y Hoffland, E. (2020). Phosphorus recovered from human excreta: A socio-ecological-technical approach to phosphorus recycling. Resources, Conservation and Recycling, 157. https://doi.org/10.1016/j.resconrec.2020.104744

Li, B., Boiarkina, I., Yu, W., Huang, H. M., Munir, T., Wang, G. Q., y Young, B. R. (2019). Phosphorous recovery through struvite crystallization: Challenges for future design. Science of the Total Environment, 648, 1244-1256. https://doi.org/10.1016/j.scitotenv.2018.07.166

Lorick, D., Macura, B., Ahlström, M., Grimvall, A., y Harder, R. (2020). Effectiveness of struvite precipitation and ammonia stripping for recovery of phosphorus and nitrogen from anaerobic digestate: A systematic review. Environmental Evidence, 9(1), 1-20. https://doi.org/10.1186/s13750-020-00211-x

Macintosh, K. A., Mayer, B. K., McDowell, R. W., Powers, S. M., Baker, L. A., Boyer, T. H., y Rittmann, B. E. (2018). Managing diffuse phosphorus at the source versus at the sink. Environmental Science and Technology, 52(21), 11995-12009. https://doi.org/10.1021/acs.est.8b01143

Macura, B., Johannesdottir, S. L., Piniewski, M., Haddaway, N. R., y Kvarnström, E. (2019a). Effectiveness of ecotechnologies for recovery of nitrogen and phosphorus from anaerobic digestate and effectiveness of the recovery products as fertilisers: A systematic review protocol. Environmental Evidence, 8(1), 1-9. https://doi.org/10.1186/s13750-019-0173-3

Macura, B., Piniewski, M., Ksiȩżniak, M., Osuch, P., Haddaway, N. R., Ek, F., Andersson, K., y Tattari, S. (2019b). Effectiveness of ecotechnologies in agriculture for the recovery and reuse of carbon and nutrients in the Baltic and boreo-temperate regions: A systematic map. Environmental Evidence, 8(1), 1-18. https://doi.org/10.1186/s13750-019-0183-1

Magrí, A., Carreras-Sempere, M., Biel, C., y Colprim, J. (2020). Recovery of phosphorus from waste water profiting from biological nitrogen treatment: Upstream, concomitant or downstream precipitation alternatives. Agronomy, 10(7). https://doi.org/10.3390/agronomy10071039

Mehr, J., Jedelhauser, M., y Binder, C. R. (2018). Transition of the Swiss phosphorus system towards a circular economy-part 1: Current state and historical developments. Sustainability, 10(5), 1-17. https://doi.org/10.3390/su10051479

Nenov, V., Peeva, G., Yemendzhiev, H., Stancheva, M., y Zerouq, F. (2020). Phosphorus consumption. From linear to circular flow. Moroccan Journal of Chemistry, 8(4), 819-829. https://doi.org/10.48317/IMIST.PRSM/morjc hem-v8i4.20652

Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., y Smith, J. (2017). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46(1), 4-17. https://doi.org/10.1007/s13280-016-0793-6

Rufí-Salís, M., Brunnhofer, N., Petit-Boix, A., Gabarrell, X., Guisasola, A., y Villalba, G. (2020). Can wastewater feed cities? Determining the feasibility and environmental burdens of struvite recovery and reuse for urban regions. Science of the Total Environment, 737, 139783. https://doi.org/10.1016/j.scitotenv.2020.139783

Rufí-Salís, M., Calvo, M. J., Petit-Boix, A., Villalba, G., y Gabarrell, X. (2020a). Exploring nutrient recovery from hydroponics in urban agriculture: An environmental assessment. Resources, Conservation and Recycling, 155, 104683. https://doi.org/10.1016/j.resconrec.2020.104683

Rufí-Salís, M., Petit-Boix, A., Villalba, G., Gabarrell, X., y Leipold, S. (2021). Combining LCA and circularity assessments in complex production systems: The case of urban agriculture. Resources, Conservation and Recycling, 166, 105359. https://doi.org/10.1016/j.resconrec.2020.105359

Sherwood, J. (2020). The significance of biomass in a circular economy. Bioresource Technology, 300, 122755. https://doi.org/10.1016/j.biortech.2020.122755

Toop, T. A., Ward, S., Oldfield, T., Hull, M., Kirby, M. E., y Theodorou, M. K. (2017). AgroCycle-Developing a circular economy in agriculture. Energy Procedia, 123, 76-80. https://doi.org/10.1016/j.egypro.2017.07.269

Valencia-Hernández, D. S., Robledo, S., Pinilla, R., Duque-Méndez, N. D., y Olivar-Tost, G. (2020). Sap algorithm for citation analysis: An improvement to tree of science. Ingeniería e Investigación, 40(1), 45-49. https://doi.org/10.15446/ing.investig.v40n1.77718

Venkiteshwaran, K., McNamara, P. J., y Mayer, B. K. (2018). Meta-analysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery. Science of the Total Environment, 644, 661-674. https://doi.org/10.1016/j.scitotenv.2018.06.369

Vollaro, M., Galioto, F., y Viaggi, D. (2016). The circular economy and agriculture: New opportunities for re-using phosphorus as fertilizer. Bio-Based and Applied Economics, 5(3), 267-285. https://doi.org/10.13128/BAE-18527

Yetilmezsoy, K., Ilhan, F., Kocak, E., y Akbin, H. M. (2017). Feasibility of struvite recovery process for fertilizer industry: A study of financial and economic analysis. Journal of Cleaner Production, 152, 88-102. https://doi.org/10.1016/j.jclepro.2017.03.106
Cómo citar
Alzate Ibañez, A. M., Quiceno, A. C., Ángel, L. D., & Redondo, J. M. (2022). Economía circular en la agricultura mediante la recuperación de fósforo. Revista De Investigación, 14(1), 1-16. https://doi.org/10.29097/2011-639X.@a

Descargas

La descarga de datos todavía no está disponible.
Publicado
2022-07-18
Sección
Artículos de Investigación