Sinergismo para la solución de problemas ambientales: remediación de fuentes hídricas mediante el empleo de bases de Schiff

Palabras clave: bases de Schiff, imina, enamina, remediación, fuentes de agua

Resumen

Las fuentes de agua potable, necesarias para garantizar la salud de los seres vivos y el medioambiente, son cada vez más escasas. Esta grave problemática exige el desarrollo de nuevas tecnologías eco-amigables que permitan el monitoreo de metales pesados, la prevención y, especialmente, la remediación de fuentes hídricas contaminadas. Dada la necesidad de orientar las investigaciones hacia el diseño de materiales capaces de retener o facilitar la eliminación de contaminantes con alta eficiencia y efectividad, en este artículo se presentan algunos de los últimos avances respecto al desarrollo de nuevos métodos de remediación de agua empleando bases de Schiff, una familia de moléculas de gran importancia en química. Los resultados de estas investigaciones demuestran su capacidad quelatante y como agente catalizador, en especial, su potencial aplicación para fines ambientales, siendo aún un conjunto de investigaciones incipien-tes, con mucho por explorar en este campo de la ciencia y la ingeniería.

Biografía del autor/a

Diego Quiroga, Universidad Militar Nueva Granada, Bogotá, Colombia

Departamento de Química, Facultad de Ciencias Básicas y Aplicadas.

Lili Dahiana Becerra, Universidad de la Sabana, Bogotá, Colombia

Doctorado en Biociencias, Universidad de La Sabana.

Referencias

Abdelrahman, E. A., Hegazey, R. M., Kotp, Y. H., & Alharbi, A. (2019). Facile synthesis of Fe2O3 nanoparticles from Egyptian insecticide cans for efficient photocatalytic degradation of methylene blue and crystal violet dyes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 222. 117195. doi: 10.1016/j.saa.2019.117195 DOI: https://doi.org/10.1016/j.saa.2019.117195

Abu Elella, M. H., ElHafeez, E. A., Goda, E. S., Lee, S., & Yoon, K. R. (2019). Smart bactericidal filter containing biodegradable polymers for crystal violet dye adsorption. Cellulose, 26 (17), 9179-9206. doi: 10.1007/s10570-019-02698-1 DOI: https://doi.org/10.1007/s10570-019-02698-1

Aghaei, M., Kianfar, A. H., & Dinari, M. (2019). Green synthesis of nanostructure Schiff base complex based on aromatic polyamide and manganese(III) for elimination of Hg(II) and Cd(II) from solutions. Journal of the Iranian Chemical Society, 16 (11), 2489-2500. doi: 10.1007/s13738-019-01719-x DOI: https://doi.org/10.1007/s13738-019-01719-x

Alhokbany, N., Ahamad, T., Naushad, M., & Alshehri, S. M. (2019). Feasibility of toxic metal removal from aqueous medium using Schiff-base based highly porous nanocomposite: Adsorption characteristics and post characterization. Journal of Molecular Liquids, 294. 111598. doi: 10.1016/j.molliq.2019.111598 DOI: https://doi.org/10.1016/j.molliq.2019.111598

Ali, I., Basheer, A. A., Mbianda, X. Y., Bukarov, A., Galunin, E., Burakova, I., Mkrtchyan, E., Tkachev, A., & Grachev, V. (2019). Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environment International, 127, 160-180. doi: 10.1016/j.envint.2019.03.029 DOI: https://doi.org/10.1016/j.envint.2019.03.029

Basa, P. N., Bhowmick, A., Horn, L. M., & Sykes, A. G. (2012). Zinc(II) mediated imine-enamine tautomerization. Organic Letters, 14 (11), 2698-2701. doi: 10.1021/ol300874c DOI: https://doi.org/10.1021/ol300874c

Berhanu, A. L., Gaurav, Mohiuddin, I., Malik, A. K., Aulakh, J. S., Kumar. V., & Kim, K.-H. (2019). A review of the applications of Schiff bases as optical chemical sensors. TrAC Trends in Analytical Chemistry, 116, 74-91. doi: 10.1016/j.trac.2019.04.025 DOI: https://doi.org/10.1016/j.trac.2019.04.025

Bhattacharya, S., Gupta, A. B., Gupta, A., & Pandey, A. (2018). Introduction to water remediation: importance and methods. doi: 10.1007/978-981-10-7551-3_1 DOI: https://doi.org/10.1007/978-981-10-7551-3_1

Burk, M. J., Martinez, J. P., Feaster, J. E., & Cosford, N. (1994). Catalytic asymmetric reductive amination of ketones via highly enantioselective hydrogenation of the CN double bond. Tetrahedron, 50 (15), 4399-4428. doi: 10.1016/S0040-4020(01)89375-3 DOI: https://doi.org/10.1016/S0040-4020(01)89375-3

Casas, J. S., Castiñeiras, A., Condori, F., Couce, M. D., Russo, U., Sánchez, A., Seoane, R., Sordo, J., & Varela, J. M. (2003). Diorganotin(IV)-promoted deamination of amino acids by pyridoxal: SnR22+ complexes of pyridoxal 5′-phosphate and of the Schiff base pyridoxal-pyridoxamine (PLPM), and antibacterial activities of PLPM and [SnR2(PLPM-2H)] (R = Me, Et, Bu, Ph). Polyhedron, 22 (1), 53-65. doi: 10.1016/S0277-5387(02)01331-1 DOI: https://doi.org/10.1016/S0277-5387(02)01331-1

Chauhan, D. K., Jain, S., Battula, V. R., & Kailasam, K. (2019). Organic motif's functionalization via covalent linkage in carbon nitride: An exemplification in photocatalysis. Carbon, 152, 40-58. doi: 10.1016/j.carbon.2019.05.079 DOI: https://doi.org/10.1016/j.carbon.2019.05.079

Chen, J., Zhou, X., Sun, P., Zhang, Y., & Huang, C.-H. (2019). Complexation Enhances Cu(II)-Activated Peroxydisulfate: A Novel Activation Mechanism and Cu(III) Contribution. Environmental Science and Technology, 53 (20), 11774-11782. doi: 10.1021/acs.est.9b03873 DOI: https://doi.org/10.1021/acs.est.9b03873

Chow, S.-T., Johns, D. M., McAuliffe, C. A., & Machin, D. J. (1977). Metal complexes of aminoacids and their derivatives. Part XIV. Magnetic and spectroscopic studies of complexes of copper(II) and nickel(II) with the Schiff base N-salicylidenearginine. Inorganica Chimica Acta, 22, 1-5. doi: 10.1016/S0020-1693(00)90889-2 DOI: https://doi.org/10.1016/S0020-1693(00)90889-2

Costa, J. A. S., De Jesus, R. A., Santos, D. O., Mano, J. F., Romão, L. P. C., & Paranhos, C. M. (2020). Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microporous and Mesoporous Materials, 291. 109698. doi: 10.1016/j.micromeso.2019.109698 DOI: https://doi.org/10.1016/j.micromeso.2019.109698

Da Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B., & De Fátima, A. (2011). Schiff bases: A short review of their antimicrobial activities. Journal of Advanced Research, 2 (1), 1-8. doi: 10.1016/j.jare.2010.05.004 DOI: https://doi.org/10.1016/j.jare.2010.05.004

Dalia, S. A., Afsan, F., Hossain, Md. S., Khan, Md. N., Zakaria, C. M., Kudrat-E-Zahan, Md., & Ali, Md. M. (2018). A short review on chemistry of schiff base metal complexes and their catalytic application. International Journal of Chemical Studies, 6 (3): 2859-2866.

Deng, F., Li, S., Zhou, M., Zhu, Y., Qiu, S., Li, K., Ma, F., & Jiang, J. (2019). A biochar modified nickel-foam cathode with iron-foam catalyst in electro-Fenton for sulfamerazine degradation. Applied Catalysis B: Environmental, 256. 117796. doi: 10.1016/j.apcatb.2019.117796 DOI: https://doi.org/10.1016/j.apcatb.2019.117796

Dong, M., Tang, J., Lv, Y., Liu, Y., Wang, J., Wang, T., Bian, J., & Li, C. (2020). A dual–function fluorescent probe for Hg (II) and Cu (II) ions with two mutually independent sensing pathways and its logic gate behavior. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 226. 117645. doi: 10.1016/j.saa.2019.117645 DOI: https://doi.org/10.1016/j.saa.2019.117645

Gul. S., Khan, S. B., Rehman, I. U., Khan, M. A., & Khan, M. I. (2019). A Comprehensive Review of Magnetic Nanomaterials Modern Day Theranostics. Frontier Materials, 6, 179. doi: 10.3389/fmats.2019.00179 DOI: https://doi.org/10.3389/fmats.2019.00179

Hamza, M. F., Gamal, A., Hussein, G., Nagar, M. S., Abdel-Rahman, A. A. H., Wei, Y., & Guibal, E. (2019). Uranium(VI) and zirconium(IV) sorption on magnetic chitosan derivatives – effect of different functional groups on separation properties. Journal of Chemical Technology and Biotechnology, 94 (12), 3866-3882. doi: 10.1002/jctb.6185 DOI: https://doi.org/10.1002/jctb.6185

Hand, E. S., & Jencks, W. P. (1975). Nonlinearity in Buffer-Rate Relationships. The Significance of Carboxylate-Acid Complexes. Journal of the American Chemical Society, 97 (21), 6221-6230. doi: 10.1021/ja00854a047 DOI: https://doi.org/10.1021/ja00854a047

Jin, X., DIng, J., Xia, Q., Zhang, G., Yang, C., Shen, J., Subramaniam, B., & Chaudhari, R. V. (2019). Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism (2019). Journal of CO2 Utilization, 34, 115-148. doi: 10.1016/j.jcou.2019.05.024 DOI: https://doi.org/10.1016/j.jcou.2019.05.024

Kajal, A., Bala, S., Kamboj, S., Sharma, N., & Saini, V. (2013). Schiff Bases: A Versatile Pharmacophore. Journal of Catalysts, Article ID 893512, 1-14. doi: 10.1155/2013/893512 DOI: https://doi.org/10.1155/2013/893512

Kostochka, L., & Lezina, V. (1994). Imine-Enamine Tautomerism of Tropanone Schiff´s Bases. Chemistry of Heterocyclic Compounds, 30 (3), 335-339. doi: 10.1007/BF01165701 DOI: https://doi.org/10.1007/BF01165701

Li, Y., Guo, C., Shi, R., Zhang, H., Gong, L., & Dai, L. (2019). Chitosan/ nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb (II) ions from aqueous solution. Carbohydrate Polymers, 223. 115048. doi: 10.1016/j.carbpol.2019.115048 DOI: https://doi.org/10.1016/j.carbpol.2019.115048

Lino, A. S., Kasper, D., Guida, Y. S., Thomaz, J. R., & Malm, O. (2019). Total and methyl mercury distribution in water, sediment, plankton and fish along the Tapajós River basin in the Brazilian Amazon. Chemosphere, 235, 690-700. doi: 10.1016/j.chemosphere.2019.06.212 DOI: https://doi.org/10.1016/j.chemosphere.2019.06.212

Liu, H.-J., Wu, R.-J., Xie, S.-B., & Liu, Y.-J. (2019). Graphene oxide and its composites for adsorption of radionuclides in water. Journal of Materials Engineering, 47 (10), 22-32. doi: 10.11868/j.issn.1001-4381.2018.001369

López-Calixto, C. G., Cabrera, S., Pérez-Ruiz, R., Barawi, M., Alemán, J., De la Peña O'Shea, V. A., & Liras, M. (2019). Conjugated porous polymer based on BOPHY dyes as photocatalyst under visible light. Applied Catalysis B: Environmental, 258. 117933. doi: 10.1016/j.apcatb.2019.117933 DOI: https://doi.org/10.1016/j.apcatb.2019.117933

Maksoud, M. I. A., Elgarahy, A. M., Farrell, C., Al-Muhtaseb, A. H., Rooney, D. W., & Osman, A. I. (2020). Insight on water remediation application using magnetic nanomaterials and biosorbents. Coordination Chemistry Reviews, 403. 213096. doi: 10.1016/j.ccr.2019.213096 DOI: https://doi.org/10.1016/j.ccr.2019.213096

McIntosh, A., & Pontius, J. (2017). Science and the Global Environment. Case Studies for Integrating Science and the Global Environment. Elsevier

Memon, S., Memon, N., Mallah, A., Soomro, R., & Khuhawar, M. (2014). Schiff Bases as Chelating Reagents for Metal Ions Analysis. Current Analytical Chemistry, 10 (3), 393-417. doi: 10.2174/157341101003140521113731 DOI: https://doi.org/10.2174/157341101003140521113731

Morcali, M. H., & Baysal, A. (2019). The miniaturised process for lead removal from water samples using novel bioconjugated sorbents. International Journal of Environmental Analytical Chemistry, 99 (14), 1397-1414. doi: 10.1080/03067319.2019.1622695 DOI: https://doi.org/10.1080/03067319.2019.1622695

Oguz, M., Kursunlu, A. N., & Yilmaz, M. (2020). Low-cost and environmentally sensitive fluorescent cellulose paper for naked-eye detection of Fe (III) in aqueous media. Dyes and Pigments, 173. 107974. doi: 10.1016/j.dyepig.2019.107974 DOI: https://doi.org/10.1016/j.dyepig.2019.107974

Organización de las Naciones Unidas (ONU). Objetivos de Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/sustainable-development-goals/

Otero, A., Chapela, M.-J., Atanassova, M., Vieties, J. M., & Cabado, A. G. (2011). Cyclic Imines: Chemistry and Mechanism of Action: A Review. Chemical Research in Toxicology, 24 (11), 1817-1829. doi: 10.1021/tx200182m. DOI: https://doi.org/10.1021/tx200182m

Pescod, M. B. (1992). Wastewater treatment and use in agriculture. Food and Agriculture Organization of the United Nations.

Pleniceanu, M., Spinu, C., & Isvoranu, M. (2007). Spectrophotometric Study of the Binary System Ni(II)-n-[2- Thyenilmethyliden]-Aminopropane and the Determination of Ni(II). Analytical Applications. Revista de Chimie, 57 (7), 646-649.

Pradhan, S. K., Pareek, V., Panwar, J., & Gupta, S. (2019). Synthesis and characterization of ecofriendly silver nanoparticles combined with yttrium oxide (Ag-Y2O3) nanocomposite with assorted adsorption capacity for Cu(II) and Cr(VI) removal: A mechanism perspective. Journal of Water Process Engineering, 32. 100917. doi: 10.1016/j.jwpe.2019.100917 DOI: https://doi.org/10.1016/j.jwpe.2019.100917

Renu, Agarwal M., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination, 7 (4), 387-419. doi: 10.2166/wrd.2016.104 DOI: https://doi.org/10.2166/wrd.2016.104

Shields, D. J., Chakraborty, M., Abdelaziz, N., Duley, A., & Gudmundsdottir, A. D. (2020). Review of laser flash photolysis of organic molecules (2015-2018). Photochemistry, 47, 70-121. doi: 10.1039/9781788016520-00070 DOI: https://doi.org/10.1039/9781788016520-00070

Siadatnasab, F., Karami, K., & Khataee, A. (2019). Keggin-type polyoxometalates supported on PANI-coated CuS: Synthesis, characterization and application as the efficient adsorbents for selective dye removal. Journal of Industrial and Engineering Chemistry, 80, 205-216. doi: 10.1016/j.jiec.2019.07.050 DOI: https://doi.org/10.1016/j.jiec.2019.07.050

Sopena De Kracoff, Y. E., De Sancovich, A. M. F., & Sancovich, H. A. (1995). Evidence of an essential lysine in pig liver 5-aminolevulinic acid dehydratase. International Journal of Biochemistry and Cell Biology, 27 (12), 1331-1339. doi: 10.1016/1357-2725(95)00097-9 DOI: https://doi.org/10.1016/1357-2725(95)00097-9

Teo, S.-B., Ng, C.-H., Teoh, S.-G., & Wei, C. (1994). Metal (II) complexes of (N,N-di-N′-methylacetamido)glycine derived from mannich aminomethylation of bis(glycinato)metal(II), formaldehyde and acetamide. Polyhedron, 13 (17), 2537-2542. doi: 10.1016/S0277-5387(00)83096-X DOI: https://doi.org/10.1016/S0277-5387(00)83096-X

Thakur, N., Pandey, M. D., & Pandey, R. (2019). Co(II)-catalyzed decarboxylation of itaconic acid engendering methacrylic acid and Co(II)-MOFs for structure regulated fluorescent detection of cations. Journal of Solid State Chemistry, 280. 120987. doi: 10.1016/j.jssc.2019.120987 DOI: https://doi.org/10.1016/j.jssc.2019.120987

Wu, H., Xiao, Y., Guo, Y., Miao, S., Chen, Q., & Chen, Z. (2020). Functionalization of SBA-15 mesoporous materials with 2-acetylthiophene for adsorption of Cr(III) ions. Microporous and Mesoporous Materials, 292. 109754. doi: 10.1016/j.micromeso.2019.109754 DOI: https://doi.org/10.1016/j.micromeso.2019.109754

Xie, M., Tang, J., Fang, G., Zhang, M., Kong, L., Zhu, F., Ma, L., Zhou, D., & Zhan, J. (2020). Biomass Schiff base polymer-derived N-doped porous carbon embedded with CoO nanodots for adsorption and catalytic degradation of chlorophenol by peroxymonosulfate. Journal of Hazardous Materials, 384. 121345. doi: 10.1016/j.jhazmat.2019.121345 DOI: https://doi.org/10.1016/j.jhazmat.2019.121345

Zeng, H., Wang, L., Zhang, D., Wang, F., Sharma, V. K., & Wang, C. (2019). Amido-functionalized carboxymethyl chitosan/montmorillonite composite for highly efficient and cost-effective mercury removal from aqueous solution. Journal of Colloid and Interface Science, 554, 479-487. doi: 10.1016/j.jcis.2019.07.029 DOI: https://doi.org/10.1016/j.jcis.2019.07.029

Zhang, W., Mu, Y., He, X., Chen, P., Zhao, S., Huang, C., Wang, Y., & Chen, J. (2020). Robust porous polymers bearing phosphine oxide/chalcogenide ligands for volatile iodine capture. Chemical Engineering Journal, 379. 122365. doi: 10.1016/j.cej.2019.122365 DOI: https://doi.org/10.1016/j.cej.2019.122365

Zhu, H., Guo, W., Wang, J., He, H., Hou, X., Zhou, S., & Wang, S. (2019). Tuneable design of a pulp fibre-based colorimetric sensor and its visual recognition mechanism for ppb levels of Ag+. Cellulose, 26 (17), 9149-9161. doi: 10.1007/s10570-019-02713-5 DOI: https://doi.org/10.1007/s10570-019-02713-5

Cómo citar
Quiroga, D., Becerra, L. D., & Borrego-Muñoz, P. (2020). Sinergismo para la solución de problemas ambientales: remediación de fuentes hídricas mediante el empleo de bases de Schiff. Revista De Investigación, 12(2), 165-179. https://doi.org/10.29097/2011-639X.300

Descargas

La descarga de datos todavía no está disponible.
Publicado
2020-08-19
Sección
Artículos de Investigación