Determinación del coeficiente efectivo de convección para mezclas de gases producidos en la pirólisis de biosólidos

Palabras clave: propiedades térmicas, mezclas de gases a baja presión, pirólisis, horno rotatorio, coeficiente de convección

Resumen

Este artículo presenta la metodología utilizada para elaborar una herramienta computacional para el cálculo del coeficiente de convección efectivo entre la fase volátil y la fase sólida para un horno rotatorio en el que se realiza pirólisis de biosólidos. Se calculan las propiedades del fluido como una mezcla fija de los componentes a la salida de un horno rotatorio. Conociendo las fracciones másicas de los compuestos presentes en el gas representativo, se realiza un modelo matemático para calcular las propiedades dentro del horno a partir del cambio en la altura de la fase sólida y la temperatura de la fase volátil. Considerando lo anteriormente mencionado, se calculó el coeficiente efectivo de convección a lo largo del horno.

Referencias

Akwasi A. Boateng. 2 - basic description of rotary kiln operation. In Akwasi A. Boateng, editor, Rotary Kilns, pages 15 – 31. Butterworth-Heinemann, Burlington, 2008.
Casajus, J. Abrego, F. Marias, J. Vaxelaire, J.L. Sánchez, and A. Gonzalo. Product distribution and kinetic scheme for the fixed bed thermal decomposition of sewage sludge. Chemical Engineering Journal, 145(3):412 – 419, 2009.
Craig L. Silver. Chapter 21 - open-source software. In Kim R Fowler and Craig L. Silver, editors, Developing and Managing Embedded Systems and Products, pages 733 – 740. Newnes, Oxford, 2015.
Gómez, W. Klose, and S. Rincón. Pirólisis de biomasa: cuesco de palma. Kassel Universitypress, Kassel, 2008.
Green, D. W. , Perry, R. H.(2008). Perry’s chemical engineers’. McGraw Hill.
H.B. Goyal, Diptendu Seal, and R.C. Saxena. Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable and Sustainable Energy Reviews, 12(2):504 – 517, 2008.
Henk Kaarle Versteeg and Weeratunge Malalasekera. An introduction to computational fluid dynamics: the finite volume method. Pearson Education, 2007.
Jingai Shao, Rong Yan, Hanping Chen, Baowen Wang, Dong Ho Lee, and David Tee Liang. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry fourier transform infrared analysis. Energy & Fuels, 22(1):38–45, 2008.
John E. White, W. James Catallo, and Benjamin L. Legendre. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91(1):1 – 33, 2011.
John Rozier Cannon. The one-dimensional heat equation. Foreword by Felix E. Browder. Encyclopedia of Mathematics and Its Applications, Vol. 23. Menlo Park, California etc.: Addison-Wesley Publishing Company; Cambridge etc.: Cambridge University Press. XXV, 483 p. (1984)., 1984.
Junuthula Narasimha Reddy and David K Gartling. The finite element method in heat transfer and fluid dynamics. CRC press, 2010.
Khalid Rehman Hakeem, Mohammad Jawaid, and Umer Rashid. Biomass and Bioenergy Applications. Springer, Londres, 2014.
L. Mendoza-Geney. Pirólisis de biosólidos en horno rotatorio. PhD thesis, Universidad Nacional de Colombia - Sede Bogotá, Agosto 2016.
Manon Van de Velden, Jan Baeyens, Anke Brems, Bart Janssens, and Raf Dewil. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1):232 – 242, 2010. 17
Marsh, K. N & Texas A & M University. Thermodynamics Research Center (1986). TRC thermodynamic tables, hydrocarbons (Reissue). The Center, College Station, Tex
Mason, E. A., & Saxena, S. C. (1958). Approximate formula for the thermal conductivity of gas mixtures. The Physics of fluids, 1(5), 361-369.
P. Manara and A. Zabaniotou. Towards sewage sludge based biofuels via thermochemical conversion – a review. Renewable and Sustainable Energy Reviews, 16(5):2566 – 2582, 2012.
Peter McKendry. Energy production from biomass (part 2): conversion technologies. Bioresource Technology, 83(1):47 – 54, 2002.
Poling, B. E., Prausnitz, J. M., & O'connell, J. P. (2001). The properties of gases and liquids (Vol. 5). New York: Mcgraw-hill.
Reddy, J. N., & Gartling, D. K. (2010). The finite element method in heat transfer and fluid dynamics. CRC press.
Reichenberg, D. (1975). New methods for the estimation of the viscosity coefficients of pure gases at moderate pressures (with particular reference to organic vapors). AIChE Journal, 21(1), 181-183.
Roman A. Voloshin, Margarita V. Rodionova, Sergey K. Zharmukhamedov, T. Nejat Veziroglu, and Suleyman I. Allakhverdiev. Review: Biofuel production from plant and algal biomass. International Journal of Hydrogen Energy, 41(39):17257 – 17273, 2016.
Rowley, R. L. (2007). DIPPR Data Compilation of Pure Chemical Properties. Design Institute for Physical Properties.
S. Czernik and A.V. Bridgwater. Overview of applications of biomass fast pyrolysis oil.Energy and Fuels, 18(2):590–598, 2 2004.
S. Rincón, A. Gómez, and W. Klose. Gasificación de biomasa residual de procesamiento agroindustrial. Kassel Universitypress, Kassel, 2011.
Sebnem Yılmaz and Hasan Selim. A review on the methods for biomass to energy conversion systems design. Renewable and Sustainable Energy Reviews, 25(Supplement C):420 – 430, 2013.
Theodore L Bergman and Frank P Incropera. Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2012. 18
Tscheng, S. H., & Watkinson, A. P. (1979). Convective heat transfer in a rotary kiln. The Canadian Journal of Chemical Engineering, 57(4), 433-443
Walt Scacchi and Thomas A. Alspaugh. Understanding the role of licenses and evolution in open architecture software ecosystems. Journal of Systems and Software, 85(7):1479 – 1494, 2012. Software Ecosystems.
Yunyun Peng and Shubin Wu. The structural and thermal characteristics of wheat straw hemicellulose. Journal of Analytical and Applied Pyrolysis, 88(2):134 – 139, 2010.
Cómo citar
Giraldo, J. F., & Zapata Saad, A. J. (2020). Determinación del coeficiente efectivo de convección para mezclas de gases producidos en la pirólisis de biosólidos. Revista De Investigación, 12(1), 19-30. Recuperado a partir de https://revistas.uamerica.edu.co/index.php/rinv/article/view/223

Descargas

La descarga de datos todavía no está disponible.
Publicado
2020-02-14
Sección
Artículos de Investigación